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ON AN ANALYTIC APPROACH TO THREE-DIMENSIONAL CONTACT PROBLEMS 
OF ELASTICITY THEORY* 

M.A. SU~ATI~ 

A special kernel approximation is applied to the 
equation ofthecontact problem about the frictionless indentation of a rigid stamp 
into an elastic half-space whereupon it is successfully reducedtoaformcontaining 
just one-dimensional singular Cauchy-type integrals for a broad class of contact 
domains. The idea of the method is borrowed from the theory of finite span wings. 
In the case of a rectangular contact domain the equation obtained decomposes into 
two one-dimensional integro-differential equations. Considered as examples are the 
cases of a square stamp and a rectangular stamp with the ratio l/2 between the 
sides. Numerical results are compared with those from papers in which numerical 
methods of solving the problem under consideration were used. 

1. The contact problem for an elastic half-space under the assumption of no friction in 
the contact domain will reduce to the solution of a two-dimensional Fredholm integral equa- 
tion of the first kind /l/: 

SC P(U, u)dudll 

s’ Y’(s-u)a+(y-c+ 
(l-1) 

Here E is the Young's modulus, Y is the Poisson's ratio, W (2,~) is a known function 
governing the shape of the base surface of the stamp, 8 is the contact domain, and p(x, y) is 
the unknown contact pressure. 

A fundamental two-dimensional integral equation /2/ 

(1.2) 

is also known in finite-span wing theory. 
To solve it, Laidlaw, and G.V. Sobolev independently, proposed the following approxima- 

tion of the radical 121: 

R = l/(x - a)” + (y - u)” .T Ix - 28 1 + 1 y - u f (1.3) 

which generalizes both the theory of wings of large span (Rz 1 y - u 1) and the theoryofsmall 
span wings (K z I+ - ~1). The approximation (1.3) is evidently most effective for not very 
convex domains S, for domains not containing points quite remote from the coordinate axes. 
Since the square root in (1.2) is in the numerator, the approximation (1.3) permits immediate 
separation of the integral operators acting on the variables x and y. An analogous approx- 
imation of the kernel in (1.1) for the contact problem does not permit direct achievement of 
this goal. We will show that this difficulty can be overcome after a number of special mani- 
pulations. 

We apply the approximation (1.3) to (1.11, and we then act on it with the operator@/ax'- 
@/ay' (the derivatives are understood in the generalized sense /3-55/j. We take into account 
the relations 

(&$) * I%--ulflY --uI = 
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We consequently obtain 

a * a 
x 5-u cs 

's 
’ (” ‘) 6 (y - v) du dv = ay ,S 

cs ~S(x--u)dudv+~(wY9-Wx3 (1.4) 

Furthermore, we limit ourselves to an examination of such contact domains for which any 
segment parallel to one of the coordinate axes, and with its ends within the domain S, belongs 
entirely to the domain S. For simplicity, we also consider only domains symmetric with re- 
spect to the coordinate axes. Let the equation of the domain boundary in the first quadrant 
be y= b(x) or x = u(y). Then, by using the main property of the delta-function, we finally 
arrive at the equation 

dW) b(x) 
a 
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(1.5) 

Therefore, by using the Laidlaw-Sobolev approximation (1.3), the fundamental integral 
equation (1.1) is reduced to (1.5) which contains only one-dimensional differentiation operat- 
ors and one-dimensional singular integral Cauchy-type operators. 

2, Let us examine the case of a rectangular stamp with a flat base in more detail. In 
this case a (y) G a, b (x) E b, W (x, y) = W s const , and therefore, (1.5) takes on the following 
form 

b 

a = PC’, br) duEa 
-rG z-u s P (‘3 d 

au s dv 

--a -_b ‘-” 
(2.1) 

We shall seek the solution of (2.1) in the form p(x, y) = A (z)B (y). After the change of 
variables y=by',x=ax', we obtain two one-dimensional equations for the functions 4 (2) 
and B(y) from (2.1) (we omit the primes): 

(2.2) 

(2.3) 
-1 

(P is a certain constant that should be determined below). 
Let us investigate (2.2). The solution of (2.3) is constructed analogously. We note 

that the function 

D (z) = ij A (t) dt 
0 

satisfies the known Prandtl integro-differential equation /6-B/. 
The method of trigonometric expansions /6/ applied to (2.2) results in a representation 

of the function A(X) in a series of orthogonal Chebyshev polynomials of the first kind 

(2.4) 

after which (2.2) is reduced to an infinite algebraic system in the coefficients aR /6,8/ 

(2.5) 
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f 

1 i 
Cmt’~ 4(m+k)~--1 - 4(m-k)*-1 ’ I 

The system (2.5) is constructed such that all the unknown coefficients ug(k= 1.2, .*.) 
are expressed in terms of a, after the solution. The rate of decrease in the elementsofthe 
matrix {cmr} of the system as m,k-+- 00, as well as the rate of decrease of the ele- 

ments of the free terms vector (d,} as m- 00 are sufficient for quasi-complete regular- 
ity of the system for any p /8/, as well as for the existence and uniqueness of its solution 
for a value of p distinct from the eigenvalue of the homogeneous system /9/. We also apply 
the method of reduction f9/ to solve the system (2.5). If we limit ourselves to just one 
equation, we obtain 

a1 = - ao.f(CL), rw=$IL(&&$ 

and we arrive at an expression for the function A (x)in conformity with (2.4). The solution 
of (2.3) is found analogously. In sum, the required contact pressure is determinedinthe form 

(2.6) 

The two constants a&, and p are still unknown in this expression. Their appearance is 
associated with the fact that a second order differentiation operator was applied to the in- 
itial equation. And as is known, this expands the class of functions in which the solution of 
the problem is sought. To extract the unique solution, i.e., to find the quantities a,b, and 
f~, the representation (2.6) must be substituted into the initial equation (1.1). Multiplying 
both sides of this equation scalarly by T&)/1/1 -x2, we arrive at a quadratic equation in p 
whose coefficients are one-dimensional improper integrals of Bessel functions and are evaluat- 
ed by using an electronic computer. Only one of the two values of the parameter p that are 
the solution of the quadratic equation , only one will assure the positivity of the contact 
pressure p(z,y) determined by (2.6) in the whole contact domain. It is the positive andleast 
in absolute value. By knowing the value of p,we determine the coefficient a,b,after multi- 
plying (1.1) scalarly by T, (s)/l/l - x2 . 

Specific calculations show that the value of the parameter I" grows as the ratio A of the 
sides of the stamp diminishes. Convergence of the series (2.4) is hence degraded, i.e., ap- 
plication of the method of orthogonal polynomials to (2.2) and (2.3) is not effective for a 
narrow stamp. On the other hand, for sufficiently large values of p, as follows from (2.6), 
domains of negative contact pressure, which have no physical meaning , start to appear in the 
neighborhood of the axes of symmetry. To study the question up to what value is an increase 
in the parameter p allowable, the spectral properties of (2.2) must be studied. However, 
because its equivalent, the Prandtl equation, has been studied so much, it is more convenient 
to investigate this latter. 

After sequential inversion of the Cauchy-type operator and the differentiation operator, 
the Prandtl equation is converted to an equivalent Fredholm equation of the second kind /lo/ 

(2.7) 

The following /lo/ is valid relative to the spectral properties of (2.7): all the charac- 
teristic values of the homogeneous equation (2.7) are positive, and form a countable discrete 
spectrum; the value of the least eigennumber p, obtained from certain integral estimates is 
3.637 &1O-3 (it is simple); for p<p, the equation (2.7) has a unique continuous solution. It 

hence follows that the values t~<3.637 are allowable for the method proposed. 
Let us note that the value of p, close to the value p= 3.47 for which the negative con- 

tact pressure domains start to appear when using (2.6). 
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3. Examples. Square Stamp (h= 1). Here 

WE p = 0.0923, a,ba m= 0.244 -; 
a (1 - Yl) 

k ~ p (1 -v’) _ 2.41 
UPl’E (3.1) 

The two-sided estimates 2.26 < k<2.81 /l/ and the more exact 2.26 <k< 2.37 /11/ were ob- 
tained earlier for a dimensionless settling factor in the case of a square stamp. It is seen 
that the value of k obtained in this paper satisfies the first of these estimates but not the 

second, however, its relative deviation from the mean value k = 2.31 /ll/ is 5%. As a compari- 
son, we still present values of k obtained in other papers: 

k = 2.304*, 
k- 2.300 (numerical solution /12/), 

k -= 2.34 (in this case the square contact domain was considered as almost circular 

/13/). 
The distribution of dimensionless contact pressure values 

lo" x p (I, y) n (I - +)/WE 

determined by (2.6) with (3.1) taken into account, is in the lower left side of Table 1. 
Presented in the upper right side of Table 1 for comparison are analogous values obtained in 

the paper mentioned in the footnote if we limit ourselves to four coordinate functions of the 

variational method used there. 

Rectangular Stamp with h='i, as ratio of the sides. Here 

p -- P.644, 
1I;E uobu = 0.172 ___ ; 

(1 -Y”) b 
k = 1399 (3.2) 

1.644 For comparison we present values obtained earlier: k -= l.(iil (see footnote), k 

(numerical solution /14/). 

Table 1 
- 

0.7 

- 

382 
383 

"3"9': 
425 
498 

1260 

0.9 

- 
0.8 

- 

624 
626 
631 
641 
680 
777 
889 
1170. 

- 

0.8 

- 

4% 
455 
460 
468 
500 
579 
669 

- 

I - 
- 

- r - - 

- 

- 

I - 
- 

I - T 
- 

I - 
2i3 

262 
269 
295 
355 
420 
575 

0.2 

0.1 0.2 

279 
280 
284 

331 
398 
472 
646 

0.5 

0.3 

- 

286 
287 
292 
299 

479 
567 
777 

0.7 

0.5 
Y 

0 
0.1 
0.2 
0.3 

::", 
0.8 
0.9 

22 
257 
264 
289 
348 
412 
564 

x=0 

274 
276 

276 
302 
364 
430 
589 

0.3 

315 
316 
320 
328 
357 

672 
920 

0.8 

255 
259 
265 

% 
41i 
566 

0.1 

Table 2 

-. 

- 

- 

- 

- 

- 
1.8 Y 0.2 0.6 

422 
418 

424 
420 

438 
439 

z; 

558 
593 

879 
980 

1.0 i.4 

448 513 
450 527 

450 452 zz 

465 532 
469 543 

502 575 
512 579 

z; 668 678 

933 1070 
984 1020 

0 

0.1 

0.3 

0.5 

0.7 

0.9 

412 
(105 

:A; 

427 
428 

462 
476 

545 
586 

858 
980 

773 
621 

776 
822 

802 
831 

867 
857 

1020 
933 

1610 
1300 

412 
406 

426 
426 

461 
475 

543 
565 

856 
980 

*Gol'dshtein R.V., Entov V-M., and Zazovskii A.F., Solution of mixed boundary value problems 
by a direct variational method. Preprint No.78, Inst. Probl. Mekhan., Akad. Nauk SSSR, 1976. 



The distribution of dimensionless contact pressure values obtained by means of (2.6) is 
represented by the odd rows in Table 2; analogous values taken from the paper mentionedinthe 
footnote are given in the even rows. 

Let us note that the method developed in this paper and given a foundationbytheLaidlaw 
-Sobolev approximation (1.3) apparently does not permit taking account explicitly of the 
contact pressure singularity in the neighborhood of the stamp corners. 

The author is grateful to N.Kh. Arutiunian and V.M. Aleksandrov for valuable comments 
and constant attention to the research. 
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